Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
4 Combinatorics

Office Hours:
BKD 3601-7
Monday 14:00-16:00
Wednesday 14:40-16:00

Reference

- Mathematics of Choice

How to count without counting

- By Ivan Niven
- permutations, combinations, binomial coefficients, the inclusionexclusion principle, combinatorial probability, partitions of numbers, generating polynomials, the pigeonhole principle, and much

MATHEMATICS

OF CHOICE
HOW TO COUNT WITHOUT COUNTING
IVAN NIVEN
 more.

Heads, Bodies and Legs flip-book

Heads, Bodies and Legs flip-book (2)

One Hundred Thousand Billion Poems

- Cent mille milliards de poèmes

One Hundred Thousand Billion Poems (2)

nenlellu uv

e pour nous distraire ! plantions nos tréteaux

Example: Sock It Two Me

- Jack is so busy that he's always throwing his socks into his top drawer without pairing them. One morning Jack oversleeps. In his haste to get ready for school, (and still a bit sleepy), he reaches into his drawer and pulls out 2 socks.
- Jack knows that 4 blue socks, 3 green socks, and 2 tan socks are in his drawer.

1. What are Jack's chances that he pulls out 2 blue socks to match his blue slacks?
2. What are the chances that he pulls out a pair of matching socks?
```
3^4*5^2*11^7*13^8
Input:
34}\times\mp@subsup{5}{}{2}\times1\mp@subsup{1}{}{7}\times1\mp@subsup{3}{}{8
Result:
32189975201412589275
Scientific notation:
3.2189975201412589275 * 10 19
Number names:

32 quintillion 189 quadrillion 975 trillion 201 billion 412 million 589 thousand 275 32 billion billion ...

\section*{"Origin" of Probability Theory}
- Probability theory was originally inspired by gambling problems.
- In 1654, Chevalier de Mere invented a gambling system which bet even money on case B.
- When he began losing money, he asked his mathematician friend Blaise Pascal to analyze his gambling system.
- Pascal discovered that the Chevalier's system would lose about 51 percent of the time.
- Pascal became so interested in probability and together with another famous mathematician, Pierre de Fermat, they laid the foundation of probability theory.


\section*{Example: The Seven Card Hustle}
- Take five red cards and two black cards from a pack.
- Ask your friend to shuffle them and then, without looking at the faces, lay them out in a row.

- Bet that them can't turn over three red cards.
- The probability that they CAN do it is
\[
\begin{aligned}
& \frac{(5)_{3}}{(7)_{3}}=\frac{\not p \times 4 \times 3}{7 \times 6 \times \not p}=\frac{2}{7} \\
& \frac{\binom{5}{3}}{\binom{7}{3}}=\frac{5!}{\not 3!2!} \times \frac{\beta 3!4!}{7!}=5 \times 4 \times 3 \times \frac{1}{7 \times 6 \times 5}=\frac{2}{7}
\end{aligned}
\]

How to
CHEAT
EVERYTHING
Eif

A Con Man Reveals
the Secrets of the Esoteric Trade of Cheating, Scams, and Hustles

SIMON LOVELL
[Lovell, 2006]

\section*{Finger-Smudge on Touch-Screen Devices}


FRUIT NINJA
- Fingers' oily smear on the screen
- Different apps gives different finger-smudges.
- Latent smudges may be usable to infer recently and frequently touched areas of the screen--a form of information leakage.

\section*{Andre Woolery Art}

Fruit Ninja
Facebook


\section*{For sale... Andre Woolery Art}
"Untitled" Mail App Art - Polychrome
\$ 34.99
TITLE
Acrylic Print \(30^{\prime \prime} \times 40^{\prime \prime}-\$ 399.99\)
\(v\)

\section*{ADD TO CART}


\section*{Lockscreen PIN / Passcode}


\section*{Smudge Attack}
- Touchscreen smudge may give away your password/passcode
- Four distinct fingerprints reveals the four numbers used for passcode lock.


\section*{Suggestion: Repeat One Digit}
- Unknown numbers:
- The number of 4-digit different passcodes \(=10^{4}\)
- Exactly four different numbers:
- The number of 4-digit different passcodes \(=4!=24\)
- Exactly three different numbers:
- The number of 4-digit different passcodes \(=3 \times(4)_{2}=36\)

Choose the number that will be repeated

Choose the locations of the two nonrepeated numbers.

\section*{News: Most Common Lockscreen PINs}
- Passcodes of users of Big Brother Camera Security iPhone app
- \(15 \%\) of all passcode sets were represented by only 10 different passcodes

Most Common Passcodes



\section*{Even easier in Splinter Cell}
- Decipher the keypad's code by the heat left on the buttons.
- Here's the keypad viewed with your thermal goggles. (Numbers added for emphasis.) Again, the stronger the signature, the more recent the keypress.
- The code is 1456 .

\section*{Actual Research}
- University of California San Diego
- The researchers have shown that codes can be easily discerned from quite a distance (at least seven metres away) and imageanalysis software can automatically find the correct code in more than half of cases even one minute after the code has been entered.
- This figure rose to more than eighty percent if the thermal camera was used immediately after the code was entered.

K. Mowery, S. Meiklejohn, and S. Savage. 2011. "Heat of the Moment: Characterizing the Efficacy of Thermal-Camera Based Attacks". Proceedings of WOOT 2011.
http:/ / cseweb.ucsd.edu/~kmowery / papers/thermal.pdf http:// wordpress.mrreid.org/2011/08/27/hacking-pin-pads-using-thermal-vision/

\section*{The Birthday Problem (Paradox)}
- How many people do you need to assemble before the probability is greater than \(1 / 2\) that some two of them have the same birthday (month and day)?
- Birthdays consist of a month and a day with no year attached.
- Ignore February 29 which only comes in leap years
- Assume that every day is as likely as any other to be someone's birthday
- In a group of \(r\) people, what is the probability that two or more people have the same birthday?

\section*{Probability of birthday coincidence}
- Probability that there is at least two people who have the same birthday in a group of \(r\) persons
\[
= \begin{cases}1, & \text { if } r \geq 365 \\ 1-(\underbrace{\frac{365}{365} \cdot \frac{364}{365} \cdots \cdots \frac{365-(r-1)}{365}}_{r \text { terms }}), & \text { if } 0 \leq r \leq 365\end{cases}
\]

\section*{Probability of birthday coincidence}


\section*{The Birthday Problem (con’t)}
- With 88 people, the probability is greater than \(1 / 2\) of having three people with the same birthday.
- 187 people gives a probability greater than \(1 / 2\) of four people having the same birthday
[Rosenhouse, 2009, p 7]
[E. H. McKinney, "Generalized Birthday Problem": American Mathematical
Monthly, Vol. 73, No.4, 1966, pp. 385-87.]

\section*{Birthday Coincidence: \(2^{\text {nd }}\) Version}
- How many people do you need to assemble before the probability is greater than \(1 / 2\) that at least one of them have the same birthday (month and day) as you?
- In a group of \(r\) people, what is the probability that at least one of them have the same birthday (month and day) as you?

\section*{Distinct Passcodes (revisit)}
- Unknown numbers:
- The number of 4-digit different passcodes \(=10^{4}\)
- Exactly four different numbers:
- The number of 4-digit different passcodes \(=4!=24\)
- Exactly three different numbers:
- The number of 4-digit different passcodes \(=3 \times(4)_{2}=36\)
- Exactly two different numbers:
- The number of 4-digit different passcodes \(=\binom{4}{3}+\binom{4}{2}+\binom{4}{1}=14\)
- Exactly one number:
- The number of 4-digit different passcodes \(=1\)
- Check:
\[
\binom{10}{4} \cdot 24+\binom{10}{3} \cdot 36+\binom{10}{2} \cdot 14+\binom{10}{1} \cdot 1=10,000
\]

\section*{Ex: Poker Probability}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Hand & Frequency & Approx. Probability & Approx. Cumulative & Approx. Odds & Mathematical expression of absolute frequency \\
\hline Royal flush & 4 & 0.000154\% & 0.000154\% & 649,739 : 1 & \(\binom{4}{1}\) \\
\hline Straight flush (excluding royal flush) & 36 & 0.00139\% & 0.00154\% & 72,192.33: 1 & \(\binom{10}{1}\binom{4}{1}-\binom{4}{1}\) \\
\hline Four of a kind & 624 & 0.0240\% & 0.0256\% & 4,164: 1 & \(\binom{13}{1}\binom{12}{1}\binom{4}{1}\) \\
\hline Full house & 3,744 & 0.144\% & 0.170\% & 693.2 : 1 & \(\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}\) \\
\hline Flush (excluding royal flush and straight flush) & 5,108 & 0.197\% & 0.367\% & 507.8 : 1 & \(\binom{13}{5}\binom{4}{1}-\binom{10}{1}\binom{4}{1}\) \\
\hline  & 10,200 & 0.392\% & 0.76\% & 253.8: 1 & \(\binom{10}{1}\binom{4}{1}^{5}-\binom{10}{1}\binom{4}{1}\) \\
\hline Three of a kind & 54,912 & 2.11\% & 2.87\% & 46.3 : 1 & \(\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}^{2}\) \\
\hline Two pair & 123,552 & 4.75\% & 7.62\% & \(20.03: 1\) & \(\binom{13}{2}\binom{4}{2}^{2}\binom{11}{1}\binom{4}{1}\) \\
\hline One pair & 1,098,240 & 42.3\% & 49.9\% & \(1.36: 1\) & \(\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^{3}\) \\
\hline No pair / High card & 1,302,540 & 50.1\% & 100\% & . 995 : 1 & \(\left[\binom{13}{5}-10\right]\left[\binom{4}{1}^{5}-4\right]\) \\
\hline Total & 2,598,960 & 100\% & 100\% & 1: 1 & \(\binom{52}{5}\) \\
\hline
\end{tabular}
[http://www.wolframalpha.com/input/?i=probability+of+royal+flush]

\section*{Ex: Poker Probability \\ }
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{probability of royal flush} & \(\leadsto\) ¢ \\
\hline  & & & & 三 Examples 准 Random \\
\hline \multicolumn{5}{|l|}{Input interpretation:} \\
\hline poker hand & type & royal flush & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Description: \\
an ace-high straight flush (the 10, jack, queen, king, and ace all of the same suit)
\end{tabular}} \\
\hline Example of a 5-card roy &  & \(K\)
\(\nabla\) & & \\
\hline \multirow[t]{2}{*}{Properties:} & & & & Show derivations \\
\hline & \multicolumn{2}{|l|}{number of possible hands} & approximate probability & approximate chance \\
\hline 5-card hand & \multicolumn{2}{|l|}{4} & \(1.539 \times 10^{-6}\) & \(\approx 1\) in 649740 \\
\hline
\end{tabular}
[http://www.wolframalpha.com/input/?i=probability+of+full+house]

\section*{Ex: Poker Probability WolframAlpha :}

[http://www.wolframalpha.com/input/?i=probability+3+queens+2+jacks\&lk=3]

\section*{Ex: Poker Probability}

\section*{WolframAlpha}

Enter what you want to calculate or know about:


\section*{Binomial Theorem}
\[
\begin{aligned}
& \left(x_{1}+y_{1}\right) \times\left(x_{2}+y_{2}\right) \\
& \quad=x_{1} x_{2}+x_{1} y_{2}+y_{1} x_{2}+y_{1} y_{2} \\
& \left(x_{1}+y_{1}\right) \times\left(x_{2}+y_{2}\right) \times\left(x_{3}+y_{3}\right) \\
& \quad=x_{1} x_{2} x_{3}+x_{1} x_{2} y_{3}+x_{1} y_{2} x_{3}+x_{1} y_{2} y_{3}+y_{1} x_{2} x_{3}+y_{1} x_{2} y_{3}+y_{1} y_{2} x_{3}+y_{1} y_{2} y_{3} \\
& \quad \square \begin{array}{l}
x_{1}=x_{2}=x_{3}=x \\
y_{1}=y_{2}=y_{3}=y
\end{array} \\
& \quad \begin{aligned}
&(x+y) \times(x+y) \\
&=x x+x y+y x+y y=x^{2}+2 x y+y^{2} \\
&(x+y) \times(x+y) \times(x+y) \\
&=x x x+x x y+x y x+x y y+y x x+y x y+y y x+y y y \\
&=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
\end{aligned}
\]

\section*{Success Runs (1/4)}
- Suppose that two people are separately asked to toss a fair coin 120 times and take note of the results. Heads is noted as a "one" and tails as a "zero".
- Results: Two lists of compiled zeros and ones:
```

110010010110010001101010011010
010101101100110111010010011010
011010011010110011100101010001
010101010110010010110010011011)
111000111010111111010001100110
101000110100111010000101110110
011101100111111011010111000000
001101110111101111010110110101.

```

\section*{Success Runs (2/4)}
- Which list is more likely?
```

110010010110010001101010011010
010101101100110111010010011010
011010011010110011100101010001
010101010110010010110010011011)

```
111000111010111111010001100110
101000110100111010000101110110
011101100111111011010111000000
001101110111101111010110110101

\section*{Success Runs (3/4)}
- Fact: One of the two individuals has cheated and has fabricated a list of numbers without having tossed the coin.
- Which list is more likely be the fabricated list?
```

110010010110010001101010011010
010101101100110111010010011010
011010011010110011100101010001
010101010110010010110010011011)
111000111010111111010001100110
101000110100111010000101110110
011101100111111011010111000000
001101110111101111010110110101.

```

\section*{Success Runs (4/4)}
- Fact: In 120 tosses of a fair coin, there is a very large probability that at some point during the tossing process, a sequence of five or more heads or five or more tails will naturally occur.
- The probability of this is approximately 0.9865 .
- In contrast to the second list, the first list shows no such sequence of five heads in a row or five tails in a row. In the first list, the longest sequence of either heads or tails consists of three in a row.
- In 120 tosses of a fair coin, the probability of the longest sequence consisting of three or less in a row is equal to 0.000053 which is extremely small .
- Thus, the first list is almost certainly a fake.
- Most people tend to avoid noting long sequences of consecutive heads or tails. Truly random sequences do not share this human tendency!

\section*{Fun Reading ...}
- Entertaining Mathematical Puzzles (1986)
- By Martin Gardner (1914-2010)
- It includes a mixture of old and new riddles covering a variety of mathematical topics: money, speed, plane and solid geometry, probability (Part VII), topology, tricky puzzles and more.
- Carefully explained solutions follow each problem.


\section*{Fun Books...}


\section*{Exercise from Mlodinow's talk}

- At 10:14 into the video, Mlodinow shows three probabilities.
- Can you derive the first two?

- http:/ / www.youtube.com / watch?v=F0sLuRsu1Do
- [Mlodinow, 2008, p. 180-181]```

